高二數(shù)學優(yōu)秀教案5 篇一
高中數(shù)學菱形教案
一、教學目標
1、把握菱形的判定。
2、通過運用菱形知識解決具體問題,提高分析能力和觀察能力。
3、通過教具的演示培養(yǎng)學生的學習愛好。
4、根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想。
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1、教學重點:菱形的判定方法。
2、教學難點:菱形判定方法的綜合應用。
四、課時安排
1課時
五、教具學具預備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
復習提問
1、敘述菱形的定義與性質。
2、菱形兩鄰角的比為1:2,較長對角線為 ,則對角線交點到一邊距離為________.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法。
此外還有別的兩種判定方法,下面就來學習這兩種方法。
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形。
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形。圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。
分析判定2:
師問:本定理有幾個條件?
生答:兩個。
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直。
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等。
(由學生口述證實)
證實時讓學生注重線段垂直平分線在這里的應用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線 ,但都不是菱形。
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):
注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件。
例4 已知: 的對角錢 的垂直平分線與邊 、 分別交于 、 ,如圖。
求證:四邊形 是菱形(按教材講解)。
總結、擴展
1、小結:
(1)歸納判定菱形的四種常用方法。
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系。
2、思考題:已知:如圖4△ 中, , 平分 , , , 交 于 。
求證:四邊形 為菱形。
八、布置作業(yè)
教材P159中9、10、11、13(2)
九、板書設計
十、隨堂練習
教材P153中1、2、3
高二數(shù)學優(yōu)秀教案5 篇二
高中數(shù)學命題教案
命題及其關系
1.1.1命題及其關系
一、課前小練:閱讀下列語句,你能判斷它們的真假嗎?
(1)矩形的對角線相等;
(2)3 ;
(3)3 嗎?
(4)8是24的約數(shù);
(5)兩條直線相交,有且只有一個交點;
(6)他是個高個子。
二、新課內(nèi)容:
1、命題的概念:
①命題:可以判斷真假的陳述句叫做命題(proposition)。
上述6個語句中,哪些是命題。
②真命題:判斷為真的語句叫做真命題(true proposition);
假命題:判斷為假的語句叫做假命題(false proposition)。
上述5個命題中,哪些為真命題?哪些為假命題?
③例1:判斷下列語句中哪些是命題?是真命題還是假命題?
(1)空集是任何集合的子集;
(2)若整數(shù) 是素數(shù),則 是奇數(shù);
(3)2小于或等于2;
(4)對數(shù)函數(shù)是增函數(shù)嗎?
(5) ;
(6)平面內(nèi)不相交的兩條直線一定平行;
(7)明天下雨。
(學生自練 個別回答 教師點評)
④探究:學生自我舉出一些命題,并判斷它們的真假。
2、 將一個命題改寫成“若 ,則 ”的形式:
三、練習:教材 P4 1、2、3
四、作業(yè):
1、教材P8第1題
2、作業(yè)本1-10
五、課后反思
數(shù)學高二教案 篇三
教學內(nèi)容
教科書125頁,練習三十.
一、素質教育目標
(一)知識教學點
1.通過整理和復習,進一步掌握方程的有關知識。
2.通過整理和復習,進一步掌握用方程解應用題。
(二)能力訓練點
1.通過整理和復習,加強知識間的聯(lián)系,形成知識網(wǎng)絡。
2.通過整理和復習,培養(yǎng)學生計算的敏捷性和靈活性。
(三)德育滲透點
通過知識化間的聯(lián)系,使學生受到辯證唯物主義的啟蒙教育。
(四)美育滲透點
通過整理和復習,使學生感受到數(shù)學知識內(nèi)在聯(lián)系的邏輯之美,從而感悟到數(shù)學知識的魅力。
二、學法指導
1.引導學生回憶所學過知識,使知識系統(tǒng)化。
2.指導學生利用已有經(jīng)驗,進行體驗,鞏固所學知識。
三、教學重點
通過知識間的聯(lián)系,掌握方程的概念和解方程的能力。
四、教學難點
知識間的內(nèi)在聯(lián)系。
五、教具學具準備
投影儀、投影片等。
六、教學步驟
(一)導入(略)
(二)復習
1.這單元學習了什么內(nèi)容
2.回憶并概括,板書
(1)用字母表示數(shù)
(2)解簡易方程
(3)列方程解應用題。
(先啟發(fā)學生回憶學過的知識,為整理和復習做準備)。
(三)整理
1.用字母表示數(shù)
用字母表示數(shù)每天跑步的米數(shù)用X表示。
用字母表示數(shù)量關系一星期跑的米數(shù)7X。
用含有字母的式子表示數(shù)量現(xiàn)在每天跑步的米數(shù)x+2凹
(2)出示1(2),引導學生解答。
(把用字母表示數(shù),按整理和復習的類型進行梳理,形成知識結構。)
2.解簡易方程
(1)方程的意義,引導學生回憶。
解方程的意義
出示練習三十二1題,進行反饋練習。
(2)整理和復習3題
①口述解題步驟
②使學生明確:根據(jù)加、減、乘、除運算關系進解答,這在以前解含有未知數(shù)尤的等式中已經(jīng)掌握。
③出示練習三十三3、4題,部分題分組進行解答,訂正,并說一說是怎樣想的
(邊整理邊反饋練習,使學生已有的經(jīng)驗得到充分體驗和發(fā)展,提高學生的計算能力。)
④引導學生總結,解方程應注意的問題。
3.列方程解應用題
列方程解應用題,用方程的方法解決實際問題。
(1)列方程解應用題的特點是
①用字母表示未知數(shù)
②分析題中的等量關系
③列出含有未知數(shù)x的等式方程
④解答,檢驗與答答話。
(2)整理和復習4題
分組進行交流,訂正時說一說是怎樣想的
(3)練習三十三4題,用方程解,獨立計算。
(4)整理和復習5題
①先分組用不同方法解答
②引導學生進行比較
使學生明確:
用方程解應用題:用算術方法解應用題
1.未知數(shù)用字母表示,勃口列式。
1.未知數(shù)不參加列式。
2。根據(jù)題意找出數(shù)量間的相等
2.根據(jù)題里已知數(shù)和未知數(shù)間關系,引出含有未知數(shù)x的關系,引出含有末知數(shù)x的等式。的關系,確定解答步驟,再列式計算。
注意:用方程解應用題,得數(shù)不注明單位名稱;而用算術方法解應用題,得數(shù)要注明單位名稱。
今后題目中除指定解題方法以外,自己選擇解題方法。
(5)練習三十三6題
訂正時,引導學生分析、比較。
七、布置作業(yè)
練習三十三3、4題部分題,7、8題。
八、板書設計(略)
高二數(shù)學教案 篇四
一、教材分析
推理是高考的重要的內(nèi)容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內(nèi)容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現(xiàn),也可能在解答題中出現(xiàn)。
二、教學目標
(1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式
(2)過程與方法:了解合情推理和演繹推理的區(qū)別與聯(lián)系
(3)情感態(tài)度價值觀:了解演繹推理在數(shù)學證明中的重要地位和日常生活中的作用,養(yǎng)成言之有理論證有據(jù)的習慣。
三、教學重點難點
教學重點:演繹推理的含義與三段論推理及合情推理和演繹推理的區(qū)別與聯(lián)系
教學難點:演繹推理的應用
四、教學方法:探究法
五、課時安排:1課時
六、教學過程
1、 填一填:
① 所有的金屬都能夠導電,銅是金屬,所以 ;
② 太陽系的大行星都以橢圓形軌道繞太陽運行,冥王星是太陽系的大行星,因此 ;
③ 奇數(shù)都不能被2整除,20xx是奇數(shù),所以 。
2、討論:上述例子的推理形式與我們學過的合情推理一樣嗎?
3、小結:
① 概念:從一般性的原理出發(fā),推出某個特殊情況下的結論,我們把這種推理稱為____________.
要點:由_____到_____的推理。
② 討論:演繹推理與合情推理有什么區(qū)別?
③ 思考:所有的金屬都能夠導電,銅是金屬,所以銅能導電,它由幾部分組成,各部分有什么特點?
小結:三段論是演繹推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④ 舉例:舉出一些用三段論推理的例子。
例1:證明函數(shù) 在 上是增函數(shù)。
例2:在銳角三角形ABC中, ,D,E是垂足。 求證:AB的中點M到D,E的距離相等。
當堂檢測:
討論:因為指數(shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則結論是什么?
討論:演繹推理怎樣才能使得結論正確?
比較:合情推理與演繹推理的區(qū)別與聯(lián)系?
課堂小結
課后練習與提高
1、演繹推理是以下列哪個為前提,推出某個特殊情況下的結論的推理方法( )
A.一般的原理原則; B.特定的命題;
C.一般的命題; D.定理、公式。
2、因為對數(shù)函數(shù) 是增函數(shù)(大前提),而 是對數(shù)函數(shù)(小前提),所以 是增函數(shù)(結論)。上面的推理的錯誤是( )
A.大前提錯導致結論錯; B.小前提錯導致結論錯;
C.推理形式錯導致結論錯; D.大前提和小前提都錯導致結論錯。
3、下面幾種推理過程是演繹推理的是( )
A.兩條直線平行,同旁內(nèi)角互補,如果A和B是兩條平行直線的同旁內(nèi)角,則B =180B.由平面三角形的性質,推測空間四面體的性質;。
4、補充下列推理的三段論:
(1)因為互為相反數(shù)的兩個數(shù)的和為0,又因為 與 互為相反數(shù)且________________________,所以 =8.
(2)因為_____________________________________,又因為 是無限不循環(huán)小數(shù),所以 是無理數(shù)。
七、板書設計
八、教學反思
本文由用戶蒼笙踏歌分享,如有侵權請聯(lián)系。如若轉載,請注明出處:http://www.zibokaizhi.cn/24976.html