欧洲视频一区_99精品热_久月婷婷_丁香六月激情_免费观看一区二区三区毛片_国产黄a三级三级三级老师

高中必修五數(shù)學(xué)教案 高中數(shù)學(xué)必修5教案(優(yōu)秀6篇)

高中數(shù)學(xué)必修5教案(優(yōu)秀6篇)

高中數(shù)學(xué)必修五復(fù)習(xí)知識(shí)點(diǎn) 篇一

1、棱柱

棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質(zhì)

(1)側(cè)棱都相等,側(cè)面是平行四邊形

(2)兩個(gè)底面與平行于底面的截面是全等的多邊形

(3)過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形

2、棱錐

棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質(zhì):

(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(2)多個(gè)特殊的直角三角形

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

高中數(shù)學(xué)必修5教案 篇二

教學(xué)目標(biāo)

1.數(shù)列求和的綜合應(yīng)用

教學(xué)重難點(diǎn)

2.數(shù)列求和的綜合應(yīng)用

教學(xué)過(guò)程

典例分析

3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

(1)求{an}的通項(xiàng)公式

(2)求{|an|}的前n項(xiàng)和Tn

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項(xiàng)公式

(2)令bn=anxn ,求數(shù)列{bn}前n項(xiàng)和公式

7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10= S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

.已知數(shù)列{an},an∈N,Sn= (an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

11 .購(gòu)買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買后1個(gè)月第1次付款,再過(guò)1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

12 .某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

函數(shù)關(guān)系式是f(t)=

銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是

g(t)= -t/3 +109/3 (0≤t≤100)

求這種商品的日銷售額的最大值

注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過(guò)比較,確定最大值。

高中數(shù)學(xué)必修五教案 篇三

教學(xué)目標(biāo)

A、知識(shí)目標(biāo):

掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

B、能力目標(biāo):

(1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

(3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)

(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

(2)通過(guò)公式的運(yùn)用,樹(shù)立學(xué)生”大眾教學(xué)”的思想意識(shí)。

(3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的。心理體驗(yàn),產(chǎn)生熱愛(ài)數(shù)學(xué)的情感。

教學(xué)重點(diǎn):

等差數(shù)列前n項(xiàng)和的公式。

教學(xué)難點(diǎn):

等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。

教學(xué)方法:

啟發(fā)、討論、引導(dǎo)式。

教具:

現(xiàn)代教育多媒體技術(shù)。

教學(xué)過(guò)程

一、創(chuàng)設(shè)情景,導(dǎo)入新課。

師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國(guó)偉大的數(shù)學(xué)家高斯”神速求和”的故事,小高斯上小學(xué)四年級(jí)時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:”把從1到100的自然數(shù)加起來(lái),和是多少?”年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計(jì)算出來(lái)的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。

例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。

這道題除了累加計(jì)算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

二、教授新課(嘗試推導(dǎo))

師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來(lái)導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請(qǐng)一位學(xué)生板演。

上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應(yīng)用。

師:通過(guò)以上幾例,說(shuō)明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。

高中數(shù)學(xué)學(xué)習(xí)方法 篇四

一)、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。

新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。

二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

三)、調(diào)整心態(tài),正確對(duì)待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

由此可見(jiàn),要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。

高中數(shù)學(xué)必修5教案 篇五

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

數(shù)列求和的綜合應(yīng)用

教學(xué)重難點(diǎn)

數(shù)列求和的綜合應(yīng)用

教學(xué)過(guò)程

典例分析

3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

(1) 求{an}的通項(xiàng)公式

(2) 求{|an|}的前n項(xiàng)和Tn

4.等差數(shù)列{an}的公差為 ,S100=145,則a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為 的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項(xiàng)公式

(2)令bn=anxn ,求數(shù)列{bn} 前n項(xiàng)和公式

7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

8. 在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10= S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

. 已知數(shù)列{an},an∈N,Sn= (an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值

0. 已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證 數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點(diǎn)到 x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和 sn.

11 .購(gòu)買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買后1個(gè)月第1次付款,再過(guò)1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

12 .某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

函數(shù)關(guān)系式是 f(t)=

銷售量 g(t)與時(shí)間t的函數(shù)關(guān)系是

g(t)= -t/3 +109/3 (0≤t≤100)

求這種商品的日銷售額的最大值

注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過(guò)比較,確定最大值

高中數(shù)學(xué)必修5教案 篇六

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問(wèn)題,如判斷三角形的形狀,證明三角形中的三角恒等式。

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):熟練運(yùn)用定理。

教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化。

教學(xué)過(guò)程

一、復(fù)習(xí)準(zhǔn)備:

1. 寫出正弦定理、余弦定理及推論等公式。

2. 討論各公式所求解的三角形類型。

二、講授新課:

1. 教學(xué)三角形的解的討論:

① 出示例1:在△ABC中,已知下列條件,解三角形。

分兩組練習(xí)→-我§www.huzhidao.com 討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?

②用如下圖示分析解的情況。 (A為銳角時(shí))

② 練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況。

2. 教學(xué)正弦定理與余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

分析:已知條件可以如何轉(zhuǎn)化?→ 引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角。

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型。

分析:由三角形的什么知識(shí)可以判別? → 求最大角余弦,由符號(hào)進(jìn)行判斷

③ 出示例4:已知△ABC中,,試判斷△ABC的形狀。

分析:如何將邊角關(guān)系中的邊化為角? →再思考:又如何將角化為邊?

3. 小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化。

三、鞏固練習(xí):

3. 作業(yè):教材P11 B組1、2題。

讀書(shū)破萬(wàn)卷下筆如有神,以上就是我為大家?guī)?lái)的6篇《高中數(shù)學(xué)必修5教案》,希望可以啟發(fā)您的一些寫作思路,更多實(shí)用的范文樣本、模板格式盡在我。

本文由用戶xiaoxing分享,如有侵權(quán)請(qǐng)聯(lián)系。如若轉(zhuǎn)載,請(qǐng)注明出處:http://www.zibokaizhi.cn/22102.html

(0)

相關(guān)推薦

發(fā)表回復(fù)

您的郵箱地址不會(huì)被公開(kāi)。 必填項(xiàng)已用 * 標(biāo)注

主站蜘蛛池模板: 大象一区 | 国产精品一区二区三区在线 | 久国久产久精永久网页 | www久久99 | 国产精品自拍一区 | 亚洲成人精品一区 | 久久久亚洲一区二区三区 | 在线观看免费黄色小视频 | 视色视频在线观看 | 欧美精品一区二区三区蜜桃视频 | 黄色永久网站 | 久久精品2 | 日韩高清国产一区在线 | 麻豆av一区 | 欧美日韩国产精品一区 | 国产99精品视频 | 黄色在线免费观看 | 久久免费精品 | 国际精品久久 | av77| 91观看| 视频一区 中文字幕 | 在线不卡a资源高清 | 日本一区二区三区四区 | 亚洲成人精品区 | 国产97久久 | 欧美精品一区视频 | 91福利视频导航 | 成人av播放 | 久久成人精品 | 国产精品欧美一区二区三区 | 国产亚洲成av人片在线观看桃 | 亚洲午夜视频在线观看 | 久久免费精品 | 亚洲视频在线观看免费 | 久久99深爱久久99精品 | 美女网站视频免费黄 | 视频一区二区中文字幕 | 国产福利91精品 | www97影院 | 亚洲精品一区二区三区精华液 |